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Abstract
The worldwide lockdown in response to the COVID-19 pandemic in year 2020 led to an economic
slowdown and a large reduction in fossil fuel CO2 emissions (Le Quéré 2020 Nat. Clim. Change 10
647–53, Liu 2020 Nat. Commun. 11); however, it is unclear how much it would slow the increasing
trend of atmospheric CO2 concentration, the main driver of climate change, and whether this
impact can be observed considering the large biosphere and weather variabilities. We used a
state-of-the-art atmospheric transport model to simulate CO2, and the model was driven by a new
daily fossil fuel emissions dataset and hourly biospheric fluxes from a carbon cycle model forced
with observed climate variability. Our results show a 0.21 ppm decrease in the atmospheric column
CO2 anomaly in the Northern Hemisphere latitude band 0–45◦ N in March 2020, and an average
of 0.14 ppm for the period of February–April 2020, which is the largest decrease in the last 10 years.
A similar decrease was observed by the carbon observing satellite GOSAT (Yokota et al 2009 Sola 5
160–3). Using model sensitivity experiments, we further found that the COVID and weather
variability are the major contributors to this CO2 drawdown, and the biosphere showed a small
positive anomaly. Measurements at marine boundary layer stations, such as Hawaii, exhibit
1–2 ppm anomalies, mostly due to weather and the biosphere. At the city scale, the on-road CO2

enhancement measured in Beijing shows a reduction by 20–30 ppm, which is consistent with the
drastically reduced traffic during the COVID lockdown. A stepwise drop of 20 ppm during the
city-wide lockdown was observed in the city of Chengdu. The ability of our current carbon
monitoring systems in detecting the small and short-lasting COVID signals at different policy
relevant scales (country and city) against the background of fossil fuel CO2 accumulated over the
last two centuries is encouraging. The COVID-19 pandemic is an unintended experiment. Its
impact suggests that to keep atmospheric CO2 at a climate-safe level will require sustained
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effort of similar magnitude and improved accuracy, as well as expanded spatiotemporal
coverage of our monitoring systems.

1. Introduction

The unprecedented worldwide lockdown in the first
few months of year 2020 led to widespread reduced
economic activities. As a result, fossil fuel CO2 emis-
sions were reduced by 8% in the first 4 months
of 2020 [1] due to reduced transportation, indus-
trial and power generation and an anticipated annual
reduction of 4%–7% in CO2 emissions [2]; how-
ever, the COVID-19 induced reduction was short-
lived as economic activities rebounded subsequently.
While the lockdown increased activities such as tele-
collaborations that benefit climate, othermeasures do
not lead to the transformation needed in energy sys-
tems. Monitoring and understanding such processes
from global to local policy-relevant scales are of crit-
ical importance for achieving our climate goals. Over
the last few decades, the scientific community has
been developing worldwide carbon information sys-
tems with the aim of monitoring and verification of
emissions reduction goals [3–6].

1.1. How big is the impact of this reduction in fossil
fuel emissions on atmospheric CO2?
A back-of-the-envelope calculation goes as following.
The current fossil fuel emissions rate is 10 GtC y−1

(Gigatonne carbon per year), of which approximately
half is taken up by carbon sinks on land and in the
ocean, with the remaining half left in the atmosphere,
resulting in a CO2 increase of 2.5 ppm per year, as
observed in a worldwide network of CO2 observator-
ies such as the renownedMauna Loa station inHawaii
[7]. Assuming a 7% reduction or 0.7 GtC for the
whole year of 2020 (high estimate of [2]), it would
cause a 0.18 ppm less increase in global atmospheric
CO2 at the end of year 2020 relative to ‘business-as-
usual’ as of 2019.

In reality, the emissions reduction did not occur
synchronously in different regions, for example,
China in February and Europe, the US and India
in March–April (figure S1 available online at
stacks.iop.org/ERL/17/015003/mmedia). The estim-
ated reduction of 8% in January–April 2020 [1]
corresponds to a decrease of 0.26 GtC, a rather
small quantity for atmospheric CO2. However, we
expect the COVID signal to largely stay in the
Northern Hemisphere (NH) for these few months
because atmosphere inter-hemispheric transport
takes approximately 1 year. We further assume that
the carbon sinks have not started because of dormant
winter vegetation and sluggish ocean-atmosphere
gas exchange. We therefore expect a 0.25 ppm less
increase of NH CO2 at the end of April, assuming
that: (a) 2.16 GtC emissions equal to 1 ppm increase

in atmospheric CO2; (b) the reduced emissions was
majorly located at the NH; (c) and thus COVID
anomaly is limited to the NH within the timescale
of a few months (e.g. Spring 2020). This magnitude
of change is within the capability of today’s high-
accuracy CO2 analyzers, but small for carbon satel-
lites such as NASA’s OCO-2 and the Japanese GOSAT
with targeted precisions of∼1 ppm and their ground
calibrations of 0.4 ppm [8–10].

Challenges also arise from the fact that besides
fossil fuel emissions, atmospheric CO2 is also strongly
influenced by the changes in the biosphere and atmo-
spheric transport in association with weather variab-
ility. The growth and decay of the northern vegeta-
tion causes a seasonal CO2 amplitude of 6 ppm, while
interannual climate variability, such as the El Niño
Southern Oscillation (ENSO), causes biogenic CO2

changes of 1–3 ppm [11–14]. Thus, a key question is
whether a 0.25 ppmCOVID signal can be seen among
other (natural) variabilities. The purpose of this study
is to investigate the atmospheric CO2 signals result-
ing from COVID-19 among other natural signals. We
explored this questionwith carbon cyclemodels and a
suite of space-borne and ground-based observations.

2. Results

2.1. Tomodel the atmospheric CO2 response to
emissions reduction and biospheric anomalies
We first created a high spatial-temporal resolution
fossil fuel emissions (FFE) dataset with daily emis-
sions data from a near real time (NRT) product
(updated from Liu et al [1]; see section 4). The daily
country-level data were disaggregated to model grid
resolution based on the Open source Data Invent-
ory of Anthropogenic CO2 (ODIAC) emissions data-
base [15]. As seen in figure 1(a) (detailed temporal
evolution in supplementary information figures S1–
S2), the carbon emissions intensity decreased bymore
than 5 gC m−2 mo−1 during February–April 2020
in East Asia, Europe, the US and India, relative to
the same period in 2019. While consistent with the
temporal variations in the original country-level data
[1], the spatially disaggregated data show further
emissions reductions concentrated in industrialized
regions and areaswith high population densities, such
as the North China Plain, India’s Ganges Basin, and
theUSNortheast andMidwest, as well as isolated cen-
ters such as Sao Paolo.

For terrestrial biosphere-atmosphere flux (FTA),
we used a dynamic vegetation and terrestrial car-
bon cycle model VEGAS [11, 16], while ocean-
atmospheric flux came from a multi-model product
(see section 4). The biospheric fluxes (figure 1(b))
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Figure 1. Anomalies for the period of February–April 2020: (a) fossil fuel emissions (FFE); (b) terrestrial biosphere-atmosphere
flux (FTA); (c) atmosphere transport model simulated column CO2 (vertically averaged); and (d) observed column CO2 from
GOSAT. Anomalies in (a) are relative to 2019 while those in (b)–(d) are relative to the climatology of 2010–2019. Fluxes are in
gC m−2 mo−1, and CO2 is in ppm. Locations in (c) are selected ground CO2 observation stations for model-data comparison.

have regional variations with magnitude often larger
than the FFE reduction, driven by climate variabil-
ity. Overall, the terrestrial biosphere had widespread
negative anomalies that were particularly strong in
the Southern Hemisphere and in April, largely in
response to a strong Indian OceanDipole event in the
circum-Indian Ocean regions [17] (figure S3). As a
result, the spatial pattern of net flux Fnet was domin-
ated by biospheric fluxes.

Because the COVID signal is expected to be con-
fined in the NH (figure S4), we focus our CO2

analysis on the NH region from the equator to
45◦ N (hereafter NH45). Although the biospheric
fluxes dominated both spatial and temporal vari-
ability (figure 2(a)), which can be seen that FTA is
highly consistent with the Fnet variabilities, and when
summed up over NH45, the magnitude of the 2020
FFE anomaly is larger than that of FTA (figure 2(a)).
This is because fossil fuel emissions were reduced
almost everywhere during the COVID-19 lockdown,
whereas the positive and negative anomalies in FTA
tend to cancel each other out. Consequently, the total
flux anomaly Fnet reached nearly−200 MtC mo−1 in
April 2020.

Subsequently, these fluxes were used as boundary
conditions for the community GEOS-Chem atmo-
spheric transport model for the period of January
2008–May 2020 (see section 4). The output of the
model is a four-dimensional depiction of spatial-
temporal evolution of atmospheric CO2 that can be

compared to various types of CO2 observations, as
well as the expected COVID impact (figures S4–S7).
Using a method termed DCA (Detrending, Climato-
logy andAnomaly; see section 4), inwhich aCO2 time
series is detrended to remove the low-frequency sig-
nal and de-seasonalized to remove the climatological
seasonal cycle, we calculated sub-annual anomalies of
column CO2, as shown in figure 2(b). After a positive
anomaly in January 2020, the CO2 anomaly trended
downward, and was 0.21 ppm lower than the long-
term climatology in March 2020, and 0.14 ppm lower
on average during February–April (figure 2(b) shaded
period). This anomaly is the largest for the same sea-
son while March 2020 is the lowest month in the last
10 years.

2.2. The GOSAT carbon satellite
Launched in 2009, has collected column CO2 (XCO2)
data for over 10 years. The spatial pattern of
February–April 2020 GOSAT anomalies (figure 1(d))
is similar to the model over India, southern Africa,
South America and the central US where large neg-
ative values are wide-spread, although the overall
spatial correlation is weak (figures 1(c) and (d)).
Detailed monthly evolution shows similar broad pat-
terns of agreement, as well as larger detailed differ-
ences (figures S8 vs. S9). The time series of CO2

anomalies averaged over NH45 (figure 2(b)) shows
reasonable agreement,mostly withinGOSAT’s uncer-
tainty range (see section 4 and figure S10), with
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Figure 2. (a) Anomalies of NH fossil fuel emissions (FFE), terrestrial biosphere-atmosphere flux (FTA), and net fluxes (Fnet)
relative to a 10 year climatology; (b) detrended anomalies of model simulated column CO2, with closed black circles marking
each year’s February, March and April, while red line is the same but for GOSAT satellite column CO2 data, both averaged for land
area between 0◦ and 45◦ N (NH45) to make them as comparable as possible. Vertical shading of February–May 2020 indicates
the ‘COVID-19 period’.

Figure 3. (a) Seasonal cycles of detrended modeled column CO2 averaged over 0–45◦ N (NH45) land region, with each individual
year plotted in gray lines, climatological mean of the 10 years of 2009–2019 in black, and most recent year May 2019–April 2020
in red; (b) CO2 anomalies relative to the climatology in (a) with same color scheme, and green for the previous year (May
2018–April 2019); (c)–(d) As in (a)–(b) but for the GOSAT satellite observed column CO2.

a correlation coefficient of 0.43. The differences
may originate from two main sources: (a) the satel-
lite’s sparse spatial-temporal sampling, particularly at
higher latitudes and cloudy regions; and (b) errors
in atmospheric transport model and simulated bio-
spheric fluxes. The drop during February–April 2020
discussed above is also clear in GOSAT, although the
signal is at the border of being statistically significant
(figure 3(d)).

To better appreciate how unusual year 2020 was,
we plotted the CO2 seasonal cycle from May 2019
to April 2020 (called Year 2020) against those of the

previous 10 years (figure 3). The CO2 anomaly for the
model is outside the standard deviation of the pre-
vious 10 individual years, while it is just at the bor-
der of being statistically significant for GOSAT, which
has almost twice as high a variance; this finding is not
surprising given its sparse spatial-temporal coverage.
Even though the COVID signal is small, the model-
data consistency in the above analysis supports using
both model and satellite column CO2 for short-term
anomaly detection.

In addition to the NH, we also conducted similar
analyses at global and regional scales of interest. For
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Figure 4.Model sensitivity experiments to separate the effects from the three factors: biospheric flux (B), atmosphere transport
(weather or W), and COVID-19 induced reduction in fossil fuel emissions (C). Starting from the original experiment that has all
three effects of biosphere, weather and COVID (BWC), experiment BW removes the COVID impact, while experiment B removes
both the COVID and weather impacts. By experimental design, the biospheric effect is relative to a 10 year climatology while
COVID and weather effects are relative to 2019 (see section 4). Cumulative contribution to mean column CO2 anomalies over
0–45◦ N are shown (NH45). The difference of two experiments represents the contribution from an individual factor.

the larger region of 45◦ S–45◦ N (G4545), both the
model and GOSAT show somewhat clearer negat-
ive anomalies in 2020 (figures S11 and S12). The
more robust 45◦ S–45◦ N signal captures the spatially
more coherent biospheric anomalies in the Southern
Hemisphere. In the other direction at the regional
scale, a large decrease in Eastern China in February
2020 is seen (figure S13), which is consistent with
the expectation of the large emissions reduction from
China during the COVID lockdown. However, it is
not statistically significant, and the spatial and tem-
poral patterns are not consistent between the model
and the observation.

2.3. To attribute the 2020 CO2 drawdown to the
biosphere, atmospheric transport (weather), and
COVID-caused reduction in fossil fuel emissions
Weconducted two additionalmodel sensitivity exper-
iments to delineate these effects (see section 4). The
monthly evolution of CO2 anomalies from these
experiments (figure 4) indicates that the roles of the
biosphere, weather, and COVID vary from month
to month. In February–April 2020, the biosphere in
NH45 had positive but decreasing anomalies while
the COVID effect steadily increased. The weather
effect was large in February and March to drawdown
CO2, but small in April (all in comparison with 2019
by model design). Averaged over February–April,
the biosphere contributed 0.042, weather contributed
−0.086, and COVID contributed −0.096 ppm, lead-
ing to an average of −0.14 ppm CO2 change (draw-
down) while March alone was−0.21 ppm.

In summary, the three factors impacted CO2 in
intricate ways. In the period of February–April 2020,
while the biosphere of the Southern Hemisphere had
widespread CO2 uptake, the NH had some uptake in
South Asia and Siberia that was overridden by CO2

release from other regions, partially in response to a

warm winter (figure S3). In contrast, COVID emis-
sions reduction was the most spatiotemporally con-
sistent factor in the NH, contributing to majority of
the CO2 decrease. The weather impact onCO2 fluctu-
ated frommonth tomonth but contributed a signific-
ant portion of the CO2 drawdown in the NH during
February–March 2020. Its importance rises towards
smaller scales to which we turn our attention now.

2.4. We analyzed data from atmospheric
background CO2 stations
From the GLOBALVIEWplus dataset ObsPack [18]
(see section 4). Figure 5 compares themodel with sur-
face observations at five marine boundary layer sta-
tions that span the remote Pacific region from north
to south. Flask sampling at these sites is carefully con-
ducted to represent atmospheric background concen-
trations on the scale of hundreds to thousands of
kilometers.

The anomalies at Kumukahi (KUM) are relatively
small in February and March 2020, but decrease rap-
idly to lower than −1 ppm in April. The model and
observations are broadly similar, in particular, the
decrease in April. It is tempting to associate this drop
with COVID reduction. However, a closer look at
the model sensitivity experiments (figure S14) reveals
large month-to-month fluctuations from the bio-
sphere and weather, for example, a positive anomaly
up to+1 ppm from the biosphere and a similarly large
negative anomaly fromweather inMarch. Of the total
CO2 drop by 1 ppm in April, 0.5 comes from the bio-
sphere, 0.5 from the weather, and only 0.2 ppm from
COVID.

Unlike a decrease in Hawaii, CO2 at Barrow,
Alaska (BRW) shows an increase in early 2020, while
Midway Island in the North Pacific Ocean (MID) has
a decrease in February–March and rebounds in April,
both of which are attributable to the biosphere and/or

5



Environ. Res. Lett. 17 (2022) 015003 N Zeng et al

Figure 5.Model-data comparison of sub-annual CO2 anomalies (ppm) at five atmospheric background sites: Barrow, Alaska
(BRW); Midway Island, North Pacific Ocean (MID); Cape Kumukahi, Hawaii (KUM); American Samoa in South Pacific Ocean
(SMO), South Pole Station. Site locations are marked in figure 1(c). Similar to figure 2(b), the model is in black, and the
observation is in red, with filled markers indicating the months of February–April for each year. Data are shown only for the
recent few years, while anomalies are relative to a 10 year climatology. The model-data correlation coefficients for the five stations
are 0.53, 0.45, 0.55, 0.30,−0.02 respectively. Shading indicates uncertainty (section 4).

weather (figure S14). Thus, while the sub-annual sig-
nal of 1–2 ppmat thesemarine surface stations is a few
times larger than the global mean column anomalies
seen by the satellite, the variability at a given station
is dominated by the biosphere and weather. Never-
theless, the 0.1 ∼ 0.2 ppm decrease due to COVID-
19, although smaller than the biospheric and weather
effects, is separable using the model, and is consistent
with the global-scale COVID induced drop discussed
above. The overall consistency between themodel and
station observations suggests the ability of both the
model and observation in capturing these sub-annual
changes, regardless of the origin.

2.5. City-scale CO2 changes
Because amajor fraction of emissions comes from cit-
ies with high levels of human activities, one can expect
a large COVID signal in urban CO2 data.We analyzed
CO2 measurements in Beijing and Chengdu.

Surface observations in Beijing show CO2 for
the winter-spring (December 2019–April 2020)
compared with the same period the year before
(figure 6(a)). During the pre-COVID period of

December–January, CO2 was significantly higher in
2020 than in the year before, because this winter’s
atmosphere was more stable and less ‘ventilated’.
February was dominated by two high-CO2 weather
events, one in each year. We compared the wind
speed of 2020 winter with 2019 based on the
0.25◦ × 0.3125◦ high resolution GEOS-FP model-
ing dataset. And the data showed that the mean daily
wind speed is indeedmuch smaller around 1 February
(1–3m s−1 in 2020 compared with those 3–8m s−1 in
2019), which contributed to the higher enhancement
in 2020. The expected low CO2 values due to COVID
in January–February (figure 6(b)), as ‘predicted’ by
the model, do not have a clear correspondence in the
weather-dominated CO2 observations. In general,
the modeled magnitude of change is much smaller
than the variability. During March–April, the differ-
ence between the 2 years decreases to much smal-
ler values. We computed the enhancement for the
shading period, and it is 30 ppm in 2020, compared
with the 20 ppm in 2019. It is tempting to explain
this difference as the result of emissions reduction,
but it is mostly brought about by weather regime
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Figure 6. Daily CO2 mole fraction measured in Beijing. (a) Measured CO2 enhancement (Xianghe station (a near-city site) minus
Xinglong, a rural site in the mountains northeast of Beijing, for the period of November 2019–April 2020 (labeled as 2020)),
compared with the year before (November 2018–April 2019, labeled as 2019); (b) model simulated CO2 difference caused by
COVID-19 emissions reduction (experiment BWC—experiment BW). Vertical shading indicates the lockdown period in Beijing.

Figure 7.Hourly CO2 and PM2.5 measured in Chengdu, a city in the Sichuan Basin to the east of Tibetan plateau. An abrupt drop
on 24 January 2020, following the Lunar New Year and city-wide lockdown is clearly visible.

shifts in the spring season with dominantly north-
westerly wind from the Mongolian Plateau. Thus,
although the COVID-19 signal is large, it is ‘buried’
in even larger weather noise. Other cities are simil-
arly dominated by weather, for example, a monthly
drop of 1–2 ppm in New York City and Delhi, and
an increase of 1–2 ppm in Washington DC and Paris
(figure S15).

Interestingly, CO2 measured in the city of
Chengdu shows a stepwise drop on January 24, the
day before the traditional Chinese Lunar New Year,
followed by a city-wide lockdown with little urban
activity for the next 1–2 months (figure 7). The dif-
ference between the month before and after the lock-
down is more than 20 ppm, and the abrupt change on
the time scale of one day is consistent with a COVID
signal, and there is no other known mechanism to
explain this result. Concurrent particulate matter
(PM2.5) measurements support this interpretation
because the short-lived PM2.5 has a similar pattern

on timescales shorter than a few days, but it has much
less monthly and longer timescale variations com-
pared to CO2.

Why is the COVID signal clear in Chengdu, but
not in Beijing? The answer lies in the differences
in weather. Chengdu, which is situated within the
Sichuan Basin in southwestern China, is surrounded
by great mountain ranges including the Tibetan Plat-
eau and has generally very calm weather with a fam-
ously known atmospheric inversion layer that is rarely
broken [19], whereas Beijing, which is at the edge of
theNorthChina Plain, is subject to largeweather fluc-
tuations, frontal passages and seasonal shifts. Thus,
weather variation is relatively small in Chengdu to
allow COVID signal to be revealed. And the simula-
tions in Chengdu also confirmed a 1–10 ppm reduc-
tion resulted from COVID-19 during the lock-down
period (comparedwith the observed 30 ppm), despite
of the coarse resolution and fossil fuel emissions data.
And the smaller modeled signal can be attributed to
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Figure 8. On-road CO2 concentrations measured before, during and after the COVID-19 lockdown in Beijing. These ‘CO2

tracking’ car trips covered the city’s four major transportation arteries, from the Second (innermost) to the Fifth Ring Road. The
west-east distance of the Fifth Ring Road is about 30 km. Each dot is 1 min average of the original 1 s or 2 s data. Station data from
the IAP tower, marked by black triangle, was used as ‘city background’ to compute on-road enhancement.

two potential reasons: (a) Lacked of local emissions
reductions data for model input, which is substituted
by national average value of−18.4% in February, and
this was likely to be underestimated through commu-
nications with local inhabitants; (b) The spatial mis-
match. Considering the instrument is deployed on the
rooftop of a 6th floor building that is near a traffic
line, and thus the observed signal reflected more of
the traffic emissions reductions.

2.6. Direct observations of on-road CO2
concentrations
Have been conducted in Beijing periodically since
2017 using mobile platforms [20, 21] (see section 4).
Some of these ‘CO2-tracking’ trips took advantage
of light-weight low-cost CO2 sensors [22]. Three
trips were selected from before, during, and after
the COVID-19 lockdown while minimizing differ-
ences in other factors such as weather conditions,
rush hours, and weekend effects. The average CO2

is 513 ppm before, 455 ppm during, and 501 ppm
after the height of lockdown (figure 8). To further
remove the confounding effect of still somewhat dif-
ferent weather conditions, we subtracted the CO2

concentration measured at the Institute of Atmo-
spheric Physics (IAP) tower station. This difference
can be thought as a traffic-induced on-road ‘CO2

enhancement’ relative to a ‘city background’. This
‘traffic enhancement’ is 65, 30 and 50 ppm respect-
ively for the three periods. The more than 30 ppm
less traffic CO2 during COVID, and still somewhat
low value during recovery, is consistent with dir-
ect traffic data, which is not surprising, because the
reduced transportation is the largest contributor of
CO2 reduction during lockdowns in cities.

3. Discussion

The detectability of the COVID-19 CO2 signal
depends strongly on spatial and temporal scales.

Our results show that, consistent with model pre-
diction, the GOSAT carbon satellite is able to detect
a short-term global mean CO2 anomaly decrease of
approximately 0.2 ppm in the NH, a number below
the satellite instrument’s targeted accuracy of indi-
vidual measurements. This somewhat surprising res-
ult stems from the fact that the COVID reduction is
negative nearly everywhere while the biosphere sig-
nal varies strongly spatially. Over large regions such as
NH45, the spatial averaging compensates for satellite
sampling sparsity, while the biosphere and weather
effects tend to cancel each other out. As a result,
the drop in global-scale CO2 anomalies was dom-
inated by the spatially coherent COVID signal. One
implication for detection is the need for meticulous
approaches in enhancing signal-to-noise ratio and
maximizing spatial-temporal data coverage [23, 24].
Here, a critical perspective is the focus on sub-annual
time scales, which have received little attention in the
past compared with the much larger CO2 seasonal
cycle and interannual variability. Our results suggest
that current observation and modeling capabilities
can depict sub-annual variations with some consist-
ency, and according to the model, the COVID period
had the largest sub-annual CO2 anomaly in the last
10 years. We also note that what we call ‘COVID-

induced reduction’ here is relative to the 2019 emis-
sions level. In a business-as-usual scenario, emis-
sions are likely to increase which may lead to a larger
‘anomalous reductions’.

The anomalies in surface observations of the
atmospheric background CO2 concentration have
sub-annual signals of 1–2 ppm, which is sub-
stantially larger than the ∼0.2 ppm COVID fossil
signal. However, the modeling results are suffi-
ciently realistic in capturing sub-annual variabilit-
ies consistent with station observations, lending sup-
port in using model experiments to separate the
COVID effect from the larger weather and biospheric
variability.
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At the urban scale in many cities such as Beijing,
New York City and Paris, atmospheric variability
dominates. Seasonal variations in weather patterns
prevented us from confidently discerning the COVID
signal despite the large fossil fuel emissions changes
expected there. Of course, this does not exclude in
any way the possibility of atmospheric inversion sys-
tems to find the fossil fuel signal by using atmospheric
transport to solve for flux directly, as has shown by
Weir et al [25]. A major caveat is that the model res-
olution is too coarse to resolve the cities properly and
the real signal is likely stronger than seen here and
it would be better simulated by meso-scale models.
Moreover, where weather variability is modest, such
as inChengdu, the lockdown caused a clear CO2 drop.
Additionally, decrease in on-road CO2 enhancement
larger than 20 ppm in Beijing was observed, which
is perhaps the most direct observation of a localized
emissions reduction.

Despite the dramatic reduction in economic
activities during the 2020COVID-19worldwide lock-
down, the short-duration of the event has left only
a small signature in the atmospheric CO2 which res-
ults from fossil fuel emissions accumulated over two
hundred years due to CO2’s long atmospheric life-
time. Nevertheless, our analysis demonstrates that its
global-to-local impacts are already detectable from a
wide variety of observation platforms we have (e.g.
ground, aircraft and satellites), albeit still imprecise,
by current carbon monitoring systems using a vari-
ety of approaches, and thatmeaningful causality attri-
butions to fossil fuels, the biosphere and weather can
be made by combining the model and observations.
Continued improvement and expansion of such cap-
abilities can play a critical role in monitoring and
verification of fossil fuel emissions reduction targets
at policy-relevant scales, such as local, country, and
global scales [26]. They can also facilitate climatemit-
igation efforts from governments, cities, institutions
and citizens.

4. Materials andmethods

4.1. Atmospheric transport model simulation
To simulate the atmospheric CO2, the model solves
the carbon mass balance equation as follows:

dCO2

dt
= Fnet ≡ FFE + FTA + FOA (1)

where dCO2
dt is the atmospheric CO2 growth rate, FFE

is fossil fuel emissions, FTA is terrestrial to atmo-
sphere flux, FOA is ocean to atmosphere flux, and
Fnet is net surface to atmosphere flux. The model is
run in a ‘forward’ fashion for each three-dimensional
model grid point (location), forced by the three
fluxes, as well as meteorological variables for atmo-
spheric transport and mixing. Here we use the
GEOS-Chem atmosphere transport model v12.5.0
(http://acmg.seas.harvard.edu/geos/) at a horizontal

resolution of 4◦ × 5◦ with 47 vertical levels. The
fluxes (below) at different resolutions are re-gridded
to 4◦ × 5◦. The model is driven by the meteoro-
logy field MERRA2 from the NASA Global Model-
ing and Assimilation Office. Details of the setup and
evaluation were described previously [27, 28]. The
simulation period was from 1 January 2008 to 31
May 2020, and data after January 2010 were used for
analysis.

4.2. Fossil fuel CO2 emissions
FFE combines a number of sources, including the
Global Carbon Project (GCP) annual country-level
carbon budget for 1959–2018 [29] with updates
for 2019 by Le Quere et al [2], daily data for
2019–2020 from Liu et al [1], the TIMES hourly
scaling factor of Nassar et al [30], and the spa-
tial information of the ODIAC database of Oda
et al [15].

Recently, a daily resolution, country-level data
became available [1]. This novel dataset achieved
daily resolution by taking advantage of a variety of
sector-based energy and economic activity statistics,
including real-time traffic data and daily electricity
generation data of major power suppliers. However,
the Liu et al [1] data were available only for early
2019 and 2020, and for this work, it was updated to
cover the period of January 2019 through May 2020.
For the years 2008–2018 when we do not have daily
resolution data, we use the 2019’s daily variation as
a surrogate but retain their annual total. Because the
emissions of Liu et al [1] for 2019–2020 are slightly
different from GCP, in order to maintain the con-
sistency of FFE from 2018 to 2019–2020, we use the
country-level GCP fossil fuel values as a constraint to
rescale the yearly total FFE from 2008 to 2020, and the
same scaling factor for 2019 is used for 2020 to obtain
a harmonized time series. Furthermore, we combine
the diurnal scaling factor from the TIMES method of
Nassar et al [30] and the daily national CO2 emissions
of 2019 of Liu et al [1] to obtain hourly country-level
CO2 emissions in 2019 and 2020.

The gridded spatial information comes from the
ODIAC emissions [15]. ODIAC uses the annual
country-level fuel consumption based on CO2 emis-
sions estimates [31] and disaggregates to a 1 km or
1 degree resolution using satellite night light obser-
vations and point source data. The annual data were
disaggregated to monthly based on a climatological
seasonal cycle. Here we simply disaggregated the
country-level hourly data above to 1◦ × 1◦ with
the spatial information of ODIAC. Since COVID-
19 reductions are more concentrated in cities with a
major reduction in transportation [1, 32], this dis-
aggregation in proportion to ODIAC’s spatial pat-
tern may underestimate the reduction in metropol-
itan regions.

Altogether, the method can be summarized in the
following equation for 2008∼ 2018:
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FFE
c,i,j,y,th = ODIACc,i,j,y × GCPtot

c,y

ODIACtot
c,y

× LZc,2019,td

LZtot
c,2019 ×TIMESi,j,tdiurnal

and for 2019∼ 2020:

FFE
c,i,j,y,th = ODIACc,i,j,2018 × GCPtot

c,2019

ODIACtot
c,2018

× LZc,y,td

LZtot
c,2019 ×TIMESi,j,tdiurnal

where y is the year, th is the hour, td is the day, tdiurnal
is the diurnal cycle. c is country, i is longitude, j is lat-
itude, and tot is the yearly total value. F c,i,j,y,th

FE is the
emission of country c at location i, j at time th of the
year i. The four datasets used to obtain this harmon-
ized labeled ODIAC, GCP, TIMES and LZ, where LZ
is the updated Liu et al [1] dataset.

4.3. The terrestrial biospheric flux
FTA is simulated by a dynamic vegetation and ter-
restrial carbon cycle model VEGAS [11, 16]. The
model is forced by observed climate variables includ-
ing monthly precipitation, hourly temperature and
radiation, and historical land use patterns, as well
as atmospheric CO2. The model was run at hourly
time step and 0.5◦ × 0.5◦ resolution from 1901 to
April 2020. This version 2.6 of VEGA largely S follows
the simulation protocol of the TRENDY [33] and the
MsTMIP [34] terrestrial model intercomparison pro-
jects with somemodel and NRT forcing data updates.
Carbon cycle models have been extensively applied to
long-term, interannual and seasonal variations, but
rarely in sub-annual changes of interest here. VEGAS
has been shown to be among themodels better at sim-
ulating such short-term changes [35, 36].

4.4. The ocean-atmosphere carbon flux
FOA uses the spatial pattern of pCO2 observation
derived fluxes fromTakahashi et al [37]. To obtain the
temporal variation, we rescaled the Takahashi spatial
pattern for the year 2013 with the temporal evolution
of FOA from the GCP annual carbon budget analysis
which is based on estimates from multiple ocean car-
bon cycle models [29]. The carbon budget was only
available up to 2018. For the year of 2019 and 2020,
theGCPocean valueswere linearly extrapolated using
the values from the previous 10 years. The annual
carbon budget thus does not contain a possible sub-
annual contribution from the ocean, which is gener-
ally believed to be small comparedwith land and fossil
flux anomalies.

4.5. Model sensitivity experiments
To delineate the contribution to CO2 changes from
fossil fuel emissions FFE, biospheric flux FTA, and
weather, we designed three sets of experiments:

(a) BWC (biosphere + weather + COVID): the
full experiment described above with realistically

varying biospheric fluxes FTA, weather, and FFE
including COVID-induced emissions reduction.

(b) BW (biosphere + weather, no COVID): same as
in BWC, but replacing FFE of 2020 with that of
2019.

(c) B (biosphere only): same as in BW, but replacing
all years’ meteorology values (wind, etc) with
that of 2019.

Thus, compared with BWC, experiment BW
removes the effect of COVID emissions, while Exper-
iment B further removes the weather effect. The dif-
ferences among these experiments show the effect
on CO2 of each individual factor. In figure 4, the
anomaly for experiment B is calculated as a detrended
anomaly, while those of BW and BWC represent the
differences between 2020 and 2019, following the
experimental design.

4.6. Observations and analysis of column CO2
from the GOSAT satellite
The satellite column CO2 data are Level-3 products
from the National Institute for Environmental
Studies (NIES) [24] (www.gosat.nies.go.jp/en/
about_5_products.html). The L3 data were derived
from the L2 data with spatial interpolation using the
Kriging technique. The data is at 2.5o × 2.5o resol-
ution and available from August 2009 to April 2020,
and these data were gap-filled with the splinemethod.
There are known biases in oceanic glint data, so we
only used land data in our analysis. For this reason,
regional average analyses in such as figure 2(b) are
over land only for both the model and GOSAT to
facilitate comparison. Additional uncertainty comes
frommissing GOSAT data in regions such as the core
of the Amazon due to persistent cloud cover and the
northern boundaries where a large solar zenith angle
may lead to larger uncertainty (e.g. figure 15 in [24]).
Thus, we excluded grid points with data coverage less
than 63% and applied a spline fit to fill the gaps for
the remaining data.

4.7. Global network of surface CO2 observations
The surface station data are from the GLOB-
ALVIEWplus ObsPack framework [18] that col-
lects a great variety and numbers of in-situ, flask
sampling, aircraft and other CO2 measurements. The
five stations data used in our analysis are all flask
sampling data. These are baseline stations managed
by NOAA that have been in operation for several dec-
ades. Great care is taken to sample air representative
of large-scale atmospheric background conditions.
The data product used here is GLOBALVIEWplus
5.0, with the most recent update ObsPack NRT
(obspack_co2_1_NRT_v5.2_2020-06-03) provided
by NOAA’s CarbonTracker team [38, 39]. The most
recent year’s data have been quality-controlled by an
automated procedure, and they may still be subject to
modifications from further manual quality control.

10

https://www.gosat.nies.go.jp/en/about_5_products.html
https://www.gosat.nies.go.jp/en/about_5_products.html


Environ. Res. Lett. 17 (2022) 015003 N Zeng et al

4.8. Uncertainty estimates of observational data
We evaluated the impact of measurement uncertainty
on our results, as shown in figure 2(b) (satellite) and
figure 5 (ground stations). For GOSAT, we first took
its location-specific measurement uncertainty pro-
duced by the GOSAT team (figure S10(a)). We then
used a Monte Carlo method to generate an ensemble
of spatially correlated uncertainty maps using the
statistical method of joint multivariate Gaussian dis-
tribution. For each ensemble member, each loca-
tion (model grid point) was assigned a random error
drawn from a Gaussian distribution with the stand-
ard deviation from the GOSAT measurement uncer-
tainty map. A spatial correlation scale of 1000 kmwas
assumed in the multivariate covariance matrix. Sens-
itivity experiments using correlation scale of 2000 and
5000 km showed similar final results. The errors were
then added to the CO2 value at the corresponding loc-
ations. A total of 100 such maps (realizations) for any
given month were generated, with 8 shown in figure
S10(b). An uncertainty range was computed for any
given regional mean CO2 (figure S10(c) and figure 2
ofmain text). This task is simpler for a ground station,
where we just used the within-month standard devi-
ation as the uncertainty because it does not involve
spatial correlation.

4.9. City CO2 station observations
A network of six tower stations using high accuracy
Picarro CO2 analyzers has been running since 2018 as
part of the Beijing-Tianjin-Hebei (JJJ) carbonmonit-
oring project [21], run by the ChineseMeteorological
Administration and the IAP of the Chinese Academy
of Sciences. The CO2 analyzers were calibrated four
times a day, with calibration gas tracing to the World
Meteorological Organization standard. The data have
a nominal accuracy of 0.1 ppm. A network of low-
cost CO2 sensors has been running in various stages
of development since 2016, as a collaborative effort
among the IAP, the University of Maryland, and the
US National Institute for Standards and Technology.
These sensors were found to be able to achieve an
accuracy of ∼5 ppm after calibration and environ-
mental correction [22]. The data used in this paper for
Beijing stations were measured with Picarros while
the data inChengduwere froma low-cost sensor node
with three individual CO2 sensors.

4.10. On-road CO2 observations in Beijing before,
during and after the COVID-19 lockdown
We conducted several on-road CO2 measurements
in Beijing and the surrounding area using mobile
platforms before, during and after the COVID-19
lockdown. Because urban CO2 concentrations are
strongly influenced by weather, we selected three trips
with the closest weather as possible for the days of
20 February 2019, 21 February 2020, and 9 May
2020. Additionally, we calculated the on-road CO2

enhancement relative to a city ‘background’ meas-
ured at the IAP tower station. We used CO2 sensors
of different accuracies, including Picarro and LI-COR
LI-7810, both mounted inside a car with an air inlet
from above roof [20]. We also used low-cost sensors
mounted on windshields, and these sensors were cal-
ibrated before and after each trip [21]. Some of the
sensors were in the same car as Picarro and their
agreement was within 5 ppm. A detailed analysis of
these trips and methodology are described in D. Liu
et al [40].

4.11. Analysis of CO2: separate sub-annual
anomalies from trend and seasonal cycle
Atmospheric CO2 data contain variabilities on a vari-
ety of time scales, from long-term increasing trends
driven by fossil fuel emissions and carbon sinks [41],
decadal variations [42], and interannual variability
dominated by ENSO [11], to a prominent seasonal
cycle [16, 43] in response to the annual growth and
decay of the biosphere. The possible COVID-19 signal
of interest here lasts for a few months on sub-annual
(month to intra-seasonal) timescales. Monthly-scale
high-frequency variabilities are generally less well
studied and are often filtered out so as to focus on sea-
sonal and longer-term changes [44].

Here, we calculate sub-annual anomalies using
a four-step ‘detrended anomaly’ approach termed
DCA:

(a) A 12 month running mean is applied to the ori-
ginal CO2 data. The running mean mostly con-
tains signals longer than a year, including long-
term trends, and interannual to decadal vari-
ations (figure 9(a)).

(b) This running mean is then subtracted from
the original CO2 data. The result is considered
‘detrended’ and is dominated by seasonal cycles
(figure 9(b) black line).

(c) A climatology is then calculated as the mean sea-
sonal cycle (figure 9(b) red line).

(d) The sub-annual anomalies (detrended anom-
alies) are the differences between the detrended
CO2 and its climatology.

The approach using running mean or other
filtering techniques to obtain low-frequency sig-
nals has been widely used to study CO2 variabil-
ity [16, 33, 44, 45]. The last two steps consist of
a standard definition of climatology and anomaly.
The final sub-annual signal is thus detrended (low-
frequency removed) and de-seasonalized (climatolo-
gical seasonal cycle removed). In comparison with
the DCA method, the standard climatology/anom-
aly method (simply called the CA method here) does
not involve detrending, and it retains a low-frequency
signal. Therefore, the DCA method is suitable for
finding CO2 sub-annual anomalies, while the CA
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Figure 9. The DCA method for finding sub-annual anomalies in a typical CO2 time series (model simulated global mean CO2 are
shown). (a) Original CO2 data (black) and 12 month running mean (red); (b) CO2 detrended (black) and its climatology (red);
(c) detrended anomalies (CO2 detrended minus its climatology), with open circles marking February–April of each year.

method is used for flux analysis, such as in figure 2(a),
which contains both interannual and sub-seasonal
information.

Data availability statement

The fossil fuel data are available at carbon-
monitor.org. The VEGAS biospheric flux data
are available at www2.atmos.umd.edu/~cabo/
NRT/. The GOSAT data are available at https://
data2.gosat.nies.go.jp/index_en.html. The ObsPack
data are available at www.esrl.noaa.gov/gmd/ccgg/
obspack/data.php. And the fossil fuel emissions
data for model are available at http://iark.cc/∼liuzq/
COVID-CO2/ODIAC.nc.

The data generated and/or analysed during the
current study are not publicly available for legal/eth-
ical reasons but are available from the corresponding
author on reasonable request.

Code availability

The GEOS-Chem model is a community model and
the code is available at http://acmg.seas.harvard.edu/
geos/.
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